Brown, Christopher F., Michal R. Kazmierski, Valerie J. Pasquarella, William J. Rucklidge, Masha Samsikova, Chenhui Zhang, Evan Shelhamer, et al. 2025.
“AlphaEarth Foundations: An Embedding Field Model for Accurate and Efficient Global Mapping from Sparse Label Data.” https://arxiv.org/abs/2507.22291.
Feng, Zhengpeng, Clement Atzberger, Sadiq Jaffer, Jovana Knezevic, Silja Sormunen, Robin Young, Madeline C. Lisaius, et al. 2025.
“TESSERA: Temporal Embeddings of Surface Spectra for Earth Representation and Analysis.” https://arxiv.org/abs/2506.20380.
Gilman, Jason, Adeel Hassan, and Nathan Zimmerman. 2025.
“The Case for a Centralized Earth Observation Vector Embeddings Catalog.” Element 84.
https://github.com/Element84/vector-embeddings-catalog-whitepaper.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.
He, Kaiming, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. 2022. “Masked Autoencoders Are Scalable Vision Learners.” In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 16000–16009.
Jakubik, Johannes, Felix Yang, Benedikt Blumenstiel, Erik Scheurer, Rocco Sedona, Stefano Maurogiovanni, Jente Bosmans, et al. 2025.
“TerraMind: Large-Scale Generative Multimodality for Earth Observation.” https://arxiv.org/abs/2504.11171.
Janowicz, Krzysztof, Gengchen Mai, Weiming Huang, Rui Zhu, Ni Lao, and Ling Cai. 2025.
“GeoFM: How Will Geo-Foundation Models Reshape Spatial Data Science and GeoAI?” International Journal of Geographical Information Science 39 (9): 1849–65.
https://doi.org/10.1080/13658816.2025.2543038.
Klemmer, Konstantin, Esther Rolf, Marc Russwurm, Gustau Camps-Valls, Mikolaj Czerkawski, Stefano Ermon, Alistair Francis, et al. 2025.
“Earth Embeddings: Towards AI-Centric Representations of Our Planet.” EarthArxiv.
https://doi.org/10.31223/X5HX9S.
Kolesnikov, Alexander, Alexey Dosovitskiy, Dirk Weissenborn, Georg Heigold, Jakob Uszkoreit, Lucas Beyer, Matthias Minderer, et al. 2021. “An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale.” In.
Rolf, Esther, Konstantin Klemmer, Caleb Robinson, and Hannah Kerner. 2024.
“Mission Critical – Satellite Data Is a Distinct Modality in Machine Learning.” https://arxiv.org/abs/2402.01444.
Szwarcman, Daniela, Sujit Roy, Paolo Fraccaro, Þorsteinn Elí Gíslason, Benedikt Blumenstiel, Rinki Ghosal, Pedro Henrique de Oliveira, et al. 2025.
“Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications.” https://arxiv.org/abs/2412.02732.
Tseng, Gabriel, Ruben Cartuyvels, Ivan Zvonkov, Mirali Purohit, David Rolnick, and Hannah Kerner. 2024.
“Lightweight, Pre-Trained Transformers for Remote Sensing Timeseries.” https://arxiv.org/abs/2304.14065.
Tseng, Gabriel, Anthony Fuller, Marlena Reil, Henry Herzog, Patrick Beukema, Favyen Bastani, James R. Green, Evan Shelhamer, Hannah Kerner, and David Rolnick. 2025.
“Galileo: Learning Global & Local Features of Many Remote Sensing Modalities.” https://arxiv.org/abs/2502.09356.